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ANOMALY DETECTION IN A COMPUTER
NETWORK

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation No. 61/923,847, filed Jan. 6, 2014, entitled: COM-
PUTER NETWORK ANOMALY TRAINING AND
DETECTION USING ARTIFICIALL NEURAL NET-
WORKS, by Vasseur, et al., the contents of which are herein
incorporated by reference.

TECHNICAL FIELD

The present disclosure relates generally to computer net-
works, and, more particularly, to the use of learning machines
within computer networks.

BACKGROUND

Low power and Lossy Networks (LLNs), e.g., Internet of
Things (IoT) networks, have a myriad of applications, such as
sensor networks, Smart Grids, and Smart Cities. Various chal-
lenges are presented with LLNs, such as lossy links, low
bandwidth, low quality transceivers, battery operation, low
memory and/or processing capability, etc. The challenging
nature of these networks is exacerbated by the large number
of nodes (an order of magnitude larger than a “classic” IP
network), thus making the routing, Quality of Service (QoS),
security, network management, and traffic engineering
extremely challenging, to mention a few.

Machine learning (ML) is concerned with the design and
the development of algorithms that take as input empirical
data (such as network statistics and performance indicators),
and recognize complex patterns in these data. In general,
these patterns are then used to make decisions automatically
(i.e., close-loop control) or to help make decisions. ML is a
very broad discipline used to tackle very different problems
(e.g., computer vision, robotics, data mining, search engines,
etc.), but the most common tasks are the following: linear and
non-linear regression, classification, clustering, dimensional-
ity reduction, anomaly detection, optimization, and associa-
tion rule learning.

One very common pattern among ML algorithms is the use
of an underlying model M, whose parameters are optimized
for minimizing the cost function associated to M, given the
input data. For instance, in the context of classification, the
model M may be a straight line that separates the data into two
classes such that M=a*x+b*y+c and the cost function would
be the number of misclassified points. The ML algorithm then
consists in adjusting the parameters a, b, ¢ such that the
number of misclassified points is minimal. After this optimi-
zation phase (or learning phase), the model M can be used
very easily to classify new data points. Often, M is a statistical
model, and the cost function is inversely proportional to the
likelihood of M, given the input data.

Learning Machines (LMs) are computational entities that
rely on one or more ML techniques for performing a task for
which they have not been explicitly programmed to perform.
In particular, LMs are capable of adjusting their behavior to
their environment. In the context of LL.Ns, and more gener-
ally in the context of the IoT (or Internet of Everything, IoE),
this ability will be very important, as the network will face
changing conditions and requirements, and the network will
become too large for efficiently management by a network
operatotr.
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Thus far, LMs have not generally been used in LLNs,
despite the overall level of complexity of LLNs, where “clas-
sic” approaches (based on known algorithms) are inefficient
or when the amount of data cannot be processed by a human
to predict network behavior considering the number of
parameters to be taken into account.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be better understood by
referring to the following description in conjunction with the
accompanying drawings in which like reference numerals
indicate identically or functionally similar elements, of
which:

FIG. 1 illustrates an example communication network;

FIG. 2 illustrates an example network device/node;

FIG. 3 illustrates an example directed acyclic graph (DAG)
in the communication network of FIG. 1;

FIG. 4A illustrates an example of a network node sending
a unicast message;

FIG. 4B illustrates an example of a network node sending
a multicast message;

FIGS. 5A-5F illustrate an example of network statistics
being aggregated;

FIG. 6 illustrates an example bi-variate probability density
function;

FIG. 7 illustrates an example of the detection of an anoma-
lous network condition;

FIG. 8 illustrates an example re-computation request being
sent; and

FIG. 9 illustrates an example simplified procedure for
detecting an anomaly in a computer network.

DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

According to one or more embodiments of the disclosure,
atraining request is sent to a plurality of nodes in a network to
cause the nodes to generate statistics regarding unicast and
broadcast message reception rates associated with the nodes.
The statistics are received from the nodes and a statistical
model is generated using the received statistics and is config-
ured to detect a network attack by comparing unicast and
broadcast message reception statistics. The statistical model
is then provided to the nodes and an indication that a network
attack was detected by a particular node is received from the
particular node.

Description

A computer network is a geographically distributed collec-
tion of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers and workstations, or other devices, such
as sensors, etc. Many types of networks are available, ranging
from local area networks (LANs) to wide area networks
(WANs). LANSs typically connect the nodes over dedicated
private communications links located in the same general
physical location, such as a building or campus. WANs, onthe
other hand, typically connect geographically dispersed nodes
over long-distance communications links, such as common
carrier telephone lines, optical lightpaths, synchronous opti-
cal networks (SONET), synchronous digital hierarchy (SDH)
links, or Powerline Communications (PLC) such as IEEE
61334, IEEE P1901.2, and others. In addition, a Mobile Ad-
Hoc Network (MANET) is akind of wireless ad-hoc network,
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which is generally considered a self-configuring network of
mobile routers (and associated hosts) connected by wireless
links, the union of which forms an arbitrary topology.

Smart object networks, such as sensor networks, in particu-
lar, are a specific type of network having spatially distributed
autonomous devices such as sensors, actuators, etc., that
cooperatively monitor physical or environmental conditions
at different locations, such as, e.g., energy/power consump-
tion, resource consumption (e.g., water/gas/etc. for advanced
metering infrastructure or “AMI” applications), temperature,
pressure, vibration, sound, radiation, motion, pollutants, etc.
Other types of smart objects include actuators, e.g., respon-
sible for turning on/off an engine or perform any other
actions. Sensor networks, a type of smart object network, are
typically shared-media networks, such as wireless or PLC
networks. That is, in addition to one or more sensors, each
sensor device (node) in a sensor network may generally be
equipped with a radio transceiver or other communication
port such as PL.C, a microcontroller, and an energy source,
such as a battery. Often, smart object networks are considered
field area networks (FANs), neighborhood area networks
(NANS), personal area networks (PANs), etc. Generally, size
and cost constraints on smart object nodes (e.g., sensors)
result in corresponding constraints on resources such as
energy, memory, computational speed and bandwidth.

FIG. 1 is a schematic block diagram of an example com-
puter network 100 illustratively comprising nodes/devices
110 (e.g., labeled as shown, “root,” “11,”“12,”...“45,” and
described in FIG. 2 below) interconnected by various meth-
ods of communication. For instance, the links 105 may be
wired links or shared media (e.g., wireless links, PL.C links,
etc.) where certain nodes 110, such as, e.g., routers, sensors,
computers, etc., may be in communication with other nodes
110, e.g., based on distance, signal strength, current opera-
tional status, location, etc. The illustrative root node, such as
afield area router (FAR) of a FAN, may interconnect the local
network with a WAN 130, which may house one or more
other relevant devices such as management devices or servers
150, e.g., a network management server (NMS), a dynamic
host configuration protocol (DHCP) server, a constrained
application protocol (CoAP) server, etc. Those skilled in the
art will understand that any number of nodes, devices, links,
etc. may be used in the computer network, and that the view
shown herein is for simplicity. Also, those skilled in the art
will further understand that while the network is shown in a
certain orientation, particularly with a “root” node, the net-
work 100 is merely an example illustration that is not meant
to limit the disclosure.

Data packets 140 (e.g., traffic and/or messages) may be
exchanged among the nodes/devices of the computer network
100 using predefined network communication protocols such
as certain known wired protocols, wireless protocols (e.g.,
IEEE Std. 802.15.4, WiFi, Bluetooth®, etc.), PLC protocols,
or other shared-media protocols where appropriate. In this
context, a protocol consists of a set of rules defining how the
nodes interact with each other.

FIG. 2 is a schematic block diagram of an example node/
device 200 that may be used with one or more embodiments
described herein, e.g., as any of the nodes or devices shown in
FIG. 1 above. The device may comprise one or more network
interfaces 210 (e.g., wired, wireless, PL.C, etc.), at least one
processor 220, and a memory 240 interconnected by a system
bus 250, as well as a power supply 260 (e.g., battery, plug-in,
etc.).

The network interface(s) 210 contain the mechanical, elec-
trical, and signaling circuitry for communicating data over
links 105 coupled to the network 100. The network interfaces
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may be configured to transmit and/or receive data using a
variety of different communication protocols. Note, further,
that the nodes may have two different types of network con-
nections 210, e.g., wireless and wired/physical connections,
and that the view herein is merely for illustration. Also, while
the network interface 210 is shown separately from power
supply 260, for PLC (where the PL.C signal may be coupled to
the power line feeding into the power supply) the network
interface 210 may communicate through the power supply
260, or may be an integral component of the power supply.

The memory 240 comprises a plurality of storage locations
that are addressable by the processor 220 and the network
interfaces 210 for storing software programs and data struc-
tures associated with the embodiments described herein.
Note that certain devices may have limited memory or no
memory (e.g., no memory for storage other than for pro-
grams/processes operating on the device and associated
caches). The processor 220 may comprise hardware elements
or hardware logic adapted to execute the software programs
and manipulate the data structures 245. Operating systems
242, portions of which are typically resident in memory 240
and executed by the processor, functionally organizes the
device by, inter alia, invoking operations in support of soft-
ware processes and/or services executing on the device.
These software processes and/or services may comprise rout-
ing process/services 244 and an illustrative “learning
machine” process 248, which may be configured depending
upon the particular node/device within the network 100 with
functionality ranging from intelligent learning machine algo-
rithms to merely communicating with intelligent learning
machines, as described herein. Note also that while the learn-
ing machine process 248 is shown in centralized memory
240, alternative embodiments provide for the process to be
specifically operated within the network interfaces 210.

It will be apparent to those skilled in the art that other
processor and memory types, including various computer-
readable media, may be used to store and execute program
instructions pertaining to the techniques described herein.
Also, while the description illustrates various processes, it is
expressly contemplated that various processes may be
embodied as modules configured to operate in accordance
with the techniques herein (e.g., according to the functional-
ity of a similar process). Further, while the processes have
been shown separately, those skilled in the art will appreciate
that processes may be routines or modules within other pro-
cesses.

Routing process (services) 244 contains computer execut-
able instructions executed by the processor 220 to perform
functions provided by one or more routing protocols, such as
proactive or reactive routing protocols, as will be understood
by those skilled in the art. These functions may, on capable
devices, be configured to manage a routing/forwarding table
(a data structure 245) containing, e.g., data used to make
routing/forwarding decisions. In particular, in proactive rout-
ing, connectivity is discovered and known prior to computing
routes to any destination in the network, e.g., link state rout-
ing such as Open Shortest Path First (OSPF), or Intermediate-
System-to-Intermediate-System (ISIS), or Optimized Link
State Routing (OLSR). Reactive routing, on the other hand,
discovers neighbors (i.e., does not have an a priori knowledge
of network topology), and in response to a needed route to a
destination, sends a route request into the network to deter-
mine which neighboring node may be used to reach the
desired destination. Example reactive routing protocols may
comprise Ad-hoc On-demand Distance Vector (AODV),
Dynamic Source Routing (DSR), DYnamic MANET On-
demand Routing (DYMO), etc. Notably, on devices not
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capable or configured to store routing entries, routing process
244 may consist solely of providing mechanisms necessary
for source routing techniques. That is, for source routing,
other devices in the network can tell the less capable devices
exactly where to send the packets, and the less capable
devices simply forward the packets as directed.

Notably, mesh networks have become increasingly popular
and practical in recent years. In particular, shared-media
mesh networks, such as wireless or PLC networks, etc., are
often on what is referred to as Low-Power and Lossy Net-
works (LLNs), which are a class of network in which both the
routers and their interconnects are constrained: LLN routers
typically operate with constraints, e.g., processing power,
memory, and/or energy (battery), and their interconnects are
characterized by, illustratively, high loss rates, low data rates,
and/or instability. LLNs are comprised of anything from a few
dozen and up to thousands or even millions of LLN routers,
and support point-to-point traffic (between devices inside the
LLN), point-to-multipoint traffic (from a central control point
such at the root node to a subset of devices inside the LLN)
and multipoint-to-point traffic (from devices inside the LLN
towards a central control point).

An example implementation of LLNs is an “Internet of
Things” network. Loosely, the term “Internet of Things™ or
“loT” (or “Internet of Everything” or “IoE”) may be used by
those in the art to refer to uniquely identifiable objects
(things) and their virtual representations in a network-based
architecture. In particular, the next frontier in the evolution of
the Internet is the ability to connect more than just computers
and communications devices, but rather the ability to connect
“objects” in general, such as lights, appliances, vehicles,
HVAC (heating, ventilating, and air-conditioning), windows
and window shades and blinds, doors, locks, etc. The “Inter-
net of Things” thus generally refers to the interconnection of
objects (e.g., smart objects), such as sensors and actuators,
over a computer network (e.g., IP), which may be the Public
Internet or a private network. Such devices have been used in
the industry for decades, usually in the form of non-IP or
proprietary protocols that are connected to IP networks by
way of protocol translation gateways. With the emergence of
a myriad of applications, such as the smart grid, smart cities,
and building and industrial automation, and cars (e.g., that
can interconnect millions of objects for sensing things like
power quality, tire pressure, and temperature and that can
actuate engines and lights), it has been of the utmost impor-
tance to extend the IP protocol suite for these networks.

An example protocol specified in an Internet Engineering
Task Force (IETF) Proposed Standard, Request for Comment
(RFC) 6550, entitled “RPL: IPv6 Routing Protocol for Low
Power and Lossy Networks” by Winter, et al. (March 2012),
provides a mechanism that supports multipoint-to-point
(MP2P) traffic from devices inside the LLN towards a central
control point (e.g., LLN Border Routers (LBRs), FARs, or
“root nodes/devices” generally), as well as point-to-multi-
point (P2MP) traffic from the central control point to the
devices inside the LLN (and also point-to-point, or “P2P”
traffic). RPL (pronounced “ripple”) may generally be
described as a distance vector routing protocol that builds a
Directed Acyclic Graph (DAG) for use in routing traffic/
packets 140, in addition to defining a set of features to bound
the control traffic, support repair, etc. Notably, as may be
appreciated by those skilled in the art, RPL also supports the
concept of Multi-Topology-Routing (MTR), whereby mul-
tiple DAGs can be built to carry traffic according to individual
requirements.

Also, a directed acyclic graph (DAG) is a directed graph
having the property that all edges are oriented in such a way
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that no cycles (loops) are supposed to exist. All edges are
contained in paths oriented toward, and terminating at, one or
more root nodes (e.g., “clusterheads or “sinks™), often to
interconnect the devices of the DAG with a larger infrastruc-
ture, such as the Internet, a wide area network, or other
domain. In addition, a Destination Oriented DAG (DODAG)
is a DAG rooted at a single destination, i.e., at a single DAG
root with no outgoing edges. A “parent” of a particular node
within a DAG is an immediate successor of the particular
node on a path towards the DAG root, such that the parent has
a lower “rank” than the particular node itself, where the rank
of'a node identifies the node’s position with respect to a DAG
root (e.g., the farther away a node is from a root, the higher is
the rank of that node). Note also that a tree is a kind of DAG,
where each device/node in the DAG generally has one parent
orone preferred parent. DAGs may generally be built (e.g., by
a DAG process and/or routing process 244) based on an
Objective Function (OF). The role of the Objective Function
is generally to specify rules on how to build the DAG (e.g.
number of parents, backup parents, etc.).

FIG. 3 illustrates an example simplified DAG that may be
created, e.g., through the techniques described above, within
network 100 of FIG. 1. For instance, certain links 105 may be
selected for each node to communicate with a particular par-
ent (and thus, in the reverse, to communicate with a child, if
one exists). These selected links form the DAG 310 (shown as
bolded lines), which extends from the root node toward one or
more leafnodes (nodes without children). Traffic/packets 140
(shown in FIG. 1) may then traverse the DAG 310 in either the
upward direction toward the root or downward toward the leaf
nodes, particularly as described herein.

RPL supports two modes of operation for maintaining and
using Downward routes:

1) Storing Mode: RPL routers unicast DAO messages
directly to their DAG Parents. In turn, RPL routers maintain
reachable IPv6 addresses for each of their DAG Children in
their routing table. Because intermediate RPL routers store
Downward routing state, this mode is called Storing mode.

2) Non-Storing Mode: RPL routers unicast DAO messages
directly to the DAG Root. The DAO message also includes the
IPv6 addresses for the source’s DAG Parents. By receiving
DAO messages from each RPL router in the network, the
DAG Root obtains information about the DAG topology and
can use source routing to deliver datagrams. Unlike Storing
mode, intermediate RPL routers in Non-Storing mode do not
maintain any Downward routes.

Learning Machine Technique(s)

As noted above, machine learning (ML) is concerned with
the design and the development of algorithms that take as
input empirical data (such as network statistics and perfor-
mance indicators), and recognize complex patterns in these
data. One very common pattern among ML algorithms is the
use of an underlying model M, whose parameters are opti-
mized for minimizing the cost function associated to M, given
the input data. For instance, in the context of classification,
the model M may be a straight line that separates the data into
two classes such that M=a*x+b*y+c and the cost function
would be the number of misclassified points. The ML algo-
rithm then consists in adjusting the parameters a, b, ¢ such that
the number of misclassified points is minimal. After this
optimization phase (or learning phase), the model M can be
used very easily to classify new data points. Often, M is a
statistical model, and the cost function is inversely propor-
tional to the likelihood of M, given the input data.

As also noted above, learning machines (LMs) are compu-
tational entities that rely on one or more ML algorithms for
performing a task for which they have not been explicitly
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programmed to perform. In particular, LMs are capable of
adjusting their behavior to their environment. In the context
of LLNs, and more generally in the context of the IoT (or
Internet of Everything, IoE), this ability will be very impor-
tant, as the network will face changing conditions and
requirements, and the network will become too large for
efficient management by a network operator. Thus far, LMs
have not generally been used in LLNs, despite the overall
level of complexity of LLNs, where “classic” approaches
(based on known algorithms) are inefficient or when the
amount of data cannot be processed by a human to predict
network behavior considering the number of parameters to be
taken into account.

Artificial Neural Networks (ANNs) are a type of machine
learning technique whose underlying mathematical models
were inspired by the hypothesis that mental activity consists
primarily of electrochemical activity between interconnected
neurons. ANNs are sets of computational units (neurons)
connected by directed weighted links. By combining the
operations performed by neurons and the weights applied by
their links, ANNs are able to perform highly non-linear opera-
tions on their input data.

The interesting aspect of ANNSs, though, is not that they can
produce highly non-linear outputs of the input. The truly
interesting aspect is that ANNs can “learn” to reproduce a
predefined behavior through a training process. This capacity
of learning has allow the successful application of ANNs to a
wide variety of learning problems, such as medical diagnos-
tics, character recognition, data compression, object tracking,
autonomous driving of vehicles, biometrics, etc.

Learning in ANNSs is treated as an optimization problem
where the weights of the links are optimized for minimizing
apredefined cost function. This optimization problem is com-
putationally very expensive, due to the high number of
parameters to be optimized, but thanks to the backpropaga-
tion algorithm, the optimization problem can be performed
very efficiently. Indeed, the backpropagation algorithm com-
putes the gradient of the cost function with respect to the
weights of the links in only one forward and backward pass
throw the ANN. With this gradient, the weights of the ANN
that minimize the cost function can be computed.

Denial of service (DoS) is a broad term for any kind of
attack aiming at, by any means, making a particular service
unavailable (be it a certain application running on a server or
network connectivity itself). This is usually performed by
bringing the target’s resources to exhaustion (again, target
resources may range from bandwidth to memory and CPU).

In greater detail, a DoS attack may consist in flooding a
target network with hundreds of megabits of traffic (volume
based DoS), exhausting a server state by opening a large
number of TCP connections (SYN flooding), or by making an
HTTP server unavailable by sending it an overwhelming
number of requests. An attack may be more subtle and exploit
well-known vulnerabilities in the target system (e.g. a large
number of fragmented IP packets may exhaust the resources
of a router).

Nowadays, DoS attacks are mostly distributed, i.e., they
are carried out by multiple sources at the same time, thus
making it more difficult to track. In many cases, botnets (i.e.
armies or infected hosts spread across the network and under
the control of a single master) are used for mounting DoS
attacks. In addition, source addresses used for attacks can be
spoofed, so that blocking an offending address is potentially
useless.

In general, DoS attacks are easy to detect when they are
brute-force, but, especially when highly distributed, they may

10

15

20

25

30

35

40

45

50

55

60

65

8

be difficult to distinguish from a flash-crowd (i.e. an overload
of'the system due to many legitimate users accessing it at the
same time).

Statistics and machine learning techniques have been pro-
posed for detecting attacks at the server or network level.
Some approaches try to analyze changes in the overall statis-
tical behavior of the network traffic (e.g. the traffic distribu-
tion among flow flattens when a DDoS attack based on a
number of microflows happens). Other approaches aim at
statistically characterizing the normal behaviors of network
flows or TCP connections, in order to detect significant devia-
tions.

However, the Internet of Things (IoT) represents a com-
pletely different scenario and requires novel detection and
reaction strategies. Its highly distributed nature implies that
there is no central vantage point from which an attack can be
observed. In addition, the scarce resources of the IoT force
reporting from the nodes to a central location to be reduced to
a minimum.

On top of the lack of global information, detecting DoS in
the IoT is made harder by the fact that a much more subtle
interference of the network’s operations may be enough to
bring the network down. For example, a jamming node can
prevent a node from decoding traffic by just emitting short
bursts when activity on the channel is detected. This can
isolate a large portion of the network which uses that node as
aparent and cut off a large portion of the network. In addition,
in the case of battery operated nodes, a slow but steady flow of
malicious traffic can exhaust a node’s battery, thus making the
node useless in a matter of days.

Due to the high variability of this kind of network, the
symptoms of those attacks are not easy to detect and can be
lost in the normal noise of the network behavior (traffic peaks
and topology changes are quite normal in LLN). Therefore,
an intelligent approach is needed that is able to reveal subtle
changes in the measured data that are typical of a known
anomalous behavior.

—Possible Attacks Against [oT—

Even though the existing literature regarding possible
attack types against the loT is limited, a number of attacks
against sensor network technologies may apply with a few
minor modifications. Such attacks can be roughly classified
into two classes: 1.) insider attacks (i.e., where the malicious
node needs to be authenticated and be in possession of the
network encryptionkeys), and 2.) outsider attacks (i.e., where
the attacker just needs to be within the radio range of the
victims).

In particular, a number of attacks against routing per-
formed by a malicious node in the DAG can be imagined. A
node can, for example, perform selective forwarding. In other
words, the node could just discard some of the traffic mes-
sages that it is asked to forward, while still participating
correctly within the routing protocol. Although this can
potentially be revealed by end-to-end mechanisms, detection
of'this type of attack can be difficult and slow due to the low
traffic rate and lossiness of IoT networks. Other example
attacks include a malicious node impersonating multiple
identities or advertising forged routing information, so as to
gain a central role in the routing topology.

While attacks belonging to the former class can be pre-
vented through well-designed cryptography and authentica-
tion, in the latter case they have to be detected by monitoring
the network environment.

The simplest form of attack that can be performed against
an RF network is jamming. This consists in artificially creat-
ing an interference, so as to prevent message decoding. There
are several variations of a jamming attack, with different
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degrees of complexity and subtlety. The attacker can continu-
ously emit power on the spectrum (continuous jamming),
create a collision when it detects activity on the channel
(reactive jamming), or attack only a particular type of traffic
(selective jamming). The damage from a jamming attack can
be maximized if the attacker is able to estimate the centrality
of a node in the routing topology. This can be obtained by
accounting for the amount of traffic transmitted and received
by each node, by leveraging the fact that the link layer
addresses are in clear. Once the jammer has detected the most
central node, it can try to make this node unreachable for its
descendants, which will in turn be forced to select another
parent. This can potentially create continuous route oscilla-
tions and convergences.

Other kinds of external DoS attacks can be performed by
exploiting the fact that a number of messages in the WPAN do
not need authentication, such as discovery beacons and some
of'the EAPolL messages used for authentication. In particular,
discovery beacons can be used for injecting false synchroni-
zation information into the network, so as to prevent two
nodes from meeting on the right unicast communication fre-
quency. EAPol, authentication messages, instead, have to be
relayed by the WPAN nodes up to the FAR, and from there
until the AAA server. This mechanism allows an attacker to
generate routable traffic, thus flooding the network and wast-
ing bandwidth and processing power. A mitigation strategy
may to have authentication requests be rate-limited. However
this may result in legitimate nodes being prevented from
authenticating when an attack is in progress.

Other attacks can be performed against networks that use
the 802.111 protocol, which is used for exchanging key infor-
mation between the authenticating node and the FAR (and
therefore, cannot be protected by link layer encryption). Such
attacks are documented in the scientific literature and aim at
blocking the handshake between the client and the access
point. This can be achieved by an attacker by interleaving a
forged message between two messages in the handshake. This
implicitly resets the handshake state, so that subsequent mes-
sages from the authenticating node are discarded.

—Frequency-Hopping and Synchronization in 802.15.4—

In a channel-hopping mesh network, devices communicate
using different channels at different times. To communicate a
packet, a transmitter-receiver pair must be configured to the
same channel during packet transmission. For a transmitter to
communicate with a receiver at an arbitrary time in the future,
the transmitter and receiver must synchronize to a channel
schedule that specifies what channel to communicate on and
at what time. Channel schedules may be assigned to each
transmitter-receiver pair independently so that neighboring
transmitter-receiver pairs can communicate simultaneously
on different channels. Such a strategy increases aggregate
network capacity for unicast communication but is inefficient
for broadcast communication. Alternatively, all devices in a
network may synchronize with a single channel schedule
such that all devices transmit and receive on the same channel
atany time. Such a strategy increases efficiency for broadcast
communication since a single transmission can reach an arbi-
trary number of neighbors, but decreases aggregate network
capacity for unicast communication since neighboring indi-
vidual transmitter-receiver pairs cannot communicate simul-
taneously without interfering. Mesh networks typically uti-
lize both unicast and broadcast communication. Applications
use unicast communication to communicate data to a central
server (e.g. AMI meter reads) or configure individual devices
from a central server (e.g. AMI meter read schedules). Net-
work control protocols use unicast communication to esti-
mate the quality of a link (e.g. RSSI and ETX), request
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configuration information (e.g. DHCPv6), and propagate
routing information (e.g. RPL. DAO messages). Applications
use multicast communication for configuring entire groups
efficiently (e.g. AMI meter configurations based on meter
type), downloading firmware upgrades (e.g. to upgrade AMI
meter software to a newer version), and for power outage
notification. Network control protocols use multicast com-
munication to discover neighbors (e.g. RPL DIO messages,
DHCPv6 advertisements, and IPv6 Neighbor Solicitations)
and disseminate routing information (e.g. RPL DIO mes-
sages). Existing systems optimize for both unicast and broad-
cast communication by synchronizing the entire network to
the same channel-switching schedule and using a central
coordinator to compute and configure channel schedules for
each individual device, or else more efficiently optimizing for
both unicast and broadcast communication in a channel-hop-
ping network without need for centrally computing schedules
for individual nodes.

In order to join the WPAN enabled with frequency hopping
(e.g., an 802.15.4 WPAN), a node needs to synchronize on the
frequency hopping schedule of'its neighbors. Therefore, each
node in the WPAN broadcasts its unicast reception schedule
via a discovery beacon, which is not encrypted and sent on
every frequency: this allows nodes joining the PAN to join. In
greater detail, the discovery beacon message is sent a broad-
cast destination WPAN and includes several information ele-
ments, most notably:

* The WPAN SSID string

* The unicast scheduling information. In one implementa-
tion, this is made up of a slot number and an offset value. This
allows the receiving node to compute the slot number the
sending node is currently is, and thus, by applying a hash
function, to know its current receiving frequency. Note that
this algorithm does not require the clocks of the two nodes to
be synchronized.

The transmission of a discovery beacon is triggered by an
associated trickle timer. However, the information about the
scheduling of the broadcast slot is not included in such a
beacon, but only in the synchronous and unicast beacons,
which are encrypted with the network key. In particular, the
synchronous beacon is triggered by a trickle timer and it is
sent on every frequency (just as the discovery beacon). The
unicast beacon, on the contrary, is sent upon request by
another node by using a standard unicast transmission. In
both cases, the beacon includes a broadcast scheduling infor-
mation element, which has the same format of the unicast
scheduling IE (Information Element). As a consequence, an
attacker can interfere with its target during its unicast slot, but
ignores the broadcast frequency schedule: the broadcast
schedule is therefore much better protected against DoS
attacks.

—=802.15.4 Security—

Currently, IoT architecture comes with several embedded
security mechanisms. The cornerstone of IoT security is
indeed link layer encryption, which is mandatory for most
frames (including routing messages and application traffic).
Besides pure encryption, link layer security ensures message
integrity (through an encrypted MAC code) and message
non-replication (through an encrypted sequence number
included in the encrypted message payload).

In order to install the necessary link layer keys on every
node, an authentication procedure is carried out when the
node joins the network. Such a procedure is based on the
EAPOL protocol, which is carried directly over layer 2 mes-
sages and is used for transporting authentication data from the
node to the FAR (notice that such messages are not
encrypted). On top of EAPOL, two main protocols are car-
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ried: EAP messages, which the FAR tunnels to an AAA server
through the RADIUS and 802.11i messages, which are used
for exchanging cryptographic material between the FAR and
the node.

In greater detail, EAP messages are used by the node for
mutual authentication with the AAA server and securely
agree on a shared secret; to this end, a complete TLS hand-
shake is, in turn, tunneled over EAP messages and a public
key mechanism based on X509 certificates is used for identity
validation. Once such shared secret has been established, the
AAA server transmits it to the FAR, which, in turn, uses it for
exchanging the link layer keys with the node through the
802.111 protocol.

Notice that the shared secret negotiated through EAP is
stored by the node in persistent memory and can be reused for
subsequent authentication (in this case, EAP is skipped and
the link layer key is directly exchanged through 802.111).

Anomaly Detection in a Computer Network

As noted above, detecting DoS attacks in LLNs faces a
number of challenges. The resources of embedded nodes are
extremely limited in terms of processing power, memory and
battery life. The amount of available bandwidth for transmit-
ting monitoring data to a centralized location is also
extremely scarce in a typical LLN.

Distributed architectures for detecting DoS attacks using
LMs have been proposed. However, those solutions need a
number of components both on the end nodes and on the FAR
hosting the LM. In addition, these approaches also need the
capability of collecting data when the network is under attack.
In some cases, such as in highly constrained networks (e.g.,
LLNs, etc.), this collection may not be possible. For example,
the nodes in an LLLN may not have enough processing power
and bandwidth to handle such a request, the nodes may be
battery operated (i.e., the nodes may have limited power
reserves), the detection infrastructure components may not be
deployed on the FAR, or it may not be possible to collect a
dataset in the network when attack conditions are present.
Accordingly, a lightweight DoS detection mechanism is pro-
vided herein that does not rely on the intervention of a central
component. By leveraging such a mechanism, a node can
independently decide that a DoS attack is in progress and, in
some cases, the node can choose to adopt local countermea-
sures (e.g., by employing a quarantine-based approach,
which allows the node to avoid publishing its synchronization
information for example in the case of 802.15.4 using fre-
quency hopping whenever an attack is detected). The light-
weight DoS detection mechanism herein may also be used in
conjunction with other distributed DoS (DDoS) attack detec-
tion mechanisms.

In particular, the techniques herein provide a methodology
for locally detecting DoS attacks at a network node/device by
leveraging the consistency between statistics collected
regarding the device’s broadcast and unicast communication
slots, according to various embodiments. As noted above, the
broadcast schedule information of a network node using the
802.15.4 link layer is only available to the authenticated
nodes, while the schedule of the unicast slot is published in
the clear. In such a case, one potential DoS attack may involve
using signal jamming, which is a frequent type of DoS attack,
during the unicast slot. The unicast slot may be an easier
target for an attack because it would be much harder to cor-
rectly synchronize with the broadcast slot, unless a brute
force approach is used. For example, an attacker may perform
a brute force attack by keeping a receiver tuned on each
possible frequency or continuously jamming the whole spec-
trum. Both of these types of attacks would be easy to detect,
as opposed to a more targeted attack on the unicast slot. The
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techniques herein also provide a completely distributed meth-
odology for aggregating statistics collected by a set of nodes
in the network. This allows for the aggregations of observa-
tions coming from a number of sources, thus capturing a
larger variability in network behavior. While the techniques
herein may be implemented as a standalone solution, the
techniques may also be integrated within a layered coopera-
tive solution, in further embodiments.

Said differently, the techniques herein provide a light-
weight and completely distributed mechanism for detecting
DoS attacks against LLNs. The techniques leverage the con-
sistency between the statistics collected in the unicast slot and
those collected in the broadcast slot (e.g., whose scheduling is
encrypted). The techniques may use in-band and out-of-band
network aggregation in order to compute a Gaussian model of
the reception success rates in the two different types of slots.
The techniques also provide a mechanism for detecting when
the computed global Gaussian model is too general for subset
of nodes in outlier network conditions. In such a case, the
nodes can trigger a model re-computation that only involves
the subset of the network nodes.

Specifically, in one or more embodiments, a training
request is sent to a plurality of nodes in a network to cause the
nodes to generate statistics regarding unicast and broadcast
message reception rates associated with the nodes. The sta-
tistics are received from the nodes and a statistical model is
generated using the received statistics and is configured to
detect a network attack by comparing unicast and broadcast
message reception statistics. The statistical model is then
provided to the nodes and an indication that a network attack
was detected by a particular node is received from the par-
ticular node.

Operationally, as shown in, and with general reference to,
FIGS. 4A-8, the techniques herein provide a local DoS detec-
tion mechanism that can be enabled on a highly constrained
network node, such as a node of an LLN. Such a mechanism
leverages the consistency between the statistics observed by a
node within a broadcast slot (i.e., where attacks are hard to
perform, since the frequency hopping information is
encrypted) and within the unicast slot (i.e., whose frequency
hopping information is broadcasted in clear) using the RF
link layer of choice in LL.Ns, namely IEEE 802.15.4. While
the techniques herein are described primarily with reference
to 802.15.4 communications, it is to be appreciated that the
techniques can be easily adapted to other situations and net-
work protocols. In contrast to approaches that offload the
most intensive operations to external entities (e.g., LM train-
ing), the techniques herein carry out both training and detec-
tion within the LLN itself. Thus, the mathematical models
used herein are significantly lighter in terms of training and
detection. In addition, approaches that use LMs for classifi-
cation require training data from when an attack is present in
the network (i.e., to detect when a particular type of attack
exists). The techniques herein, however, use an anomaly
detection approach that only requires data regarding the nor-
mal behavior of the network.

In some embodiments, the techniques herein illustratively
use a Gaussian model, which is particularly suitable for use in
constrained networks, since training the model reduces to
computing of a set of simple statistics (e.g., mean, variance,
and covariance) while detection only requires the computa-
tion of a function. In one embodiment, a multivariate Gaus-
sian distribution may be used to detect an ongoing DoS attack.
In particular, the two variables U and B will represent the
successful reception rate in a unicast and multicast slot
respectively. Those variables will be considered as jointly
Gaussian which means that the distribution of the observa-
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tions of U and B approximately follows a 2-dimensional
Gaussian distribution. This means that such a distribution
captures not only the individual behaviors of the two vari-
ables, but also the relationship between the behaviors of the
two variables. In greater detail, the statistical behaviors may
be completely characterized by the mean vector and the vari-
ance-covariance matrix. The mean vector represents the coor-
dinates of the center of the distribution, while the covariance
matrix determines the shape of the distribution.

The techniques herein use the following notation:

U, and B, will represent the i” sample of success rate in the

unicast and in the broadcast slots, respectively.

M,, and M, will represent the mean of the unicast and

broadcast success rate respectively.

S, and S, will represent the variance of the unicast and

broadcast success rate respectively.

Cov,, will represent the covariance of the two random

variables.

The knowledge of such variables will be sufficient for
characterizing the Gaussian distribution. Each of these statis-
tics can, in practice, be derived as empirical means of simple
functions of the local observations:

M, ~U+Uxs+. .. +Un)/N=SUMU,)/N
My=(B1+Bo+ . . . +Bx)/N=SUM,(B,)/N

S =(U2P+U%+ . .. UP)N-M,2=SUM(UA)/N-M,?
Sy=(B 24852+ . . . +B\A)IN-Mz>=SUM, (B 2)/IN-M;>

Cov,,=(Ui*B +Us *Bort . . . +Un*Bp)/N-
M, *M,=SUM,(U;*B)/N-M,*M,

Each of the above expressions can be easily updated with
new samples of U, and B, just by keeping a track of the number
of samples previously used. For instance, M,, can be updated
as follows:

M, =Moot Notat Utnewt Unpert - -+ +Uninew)/

WNota+Npen,)
This also applies for the aggregation of statistics generated by
two different nodes. Assume, for instance, two sample sets
issued by nodes n and m. Then, the mean value of is the union
of these two sets can be expressed as:

M,

=M, N +M,, N, V(N +N,)

Thus, it is enough for each of the nodes to export the sum of
their samples and the number of samples in the sum, to allow
an aggregator to compute the aggregated statistics without
information loss.

The first aspect of the techniques herein is a methodology
for training a Gaussian model in a completely distributed way.
The training phase may be initiated by a network manage-
ment system (NMS) or other device, by sending a multicast
message to the entire WPAN (e.g., a collection request mes-
sage), thereby triggering data collection on every node.
Notice that it is the network administrator’s responsibility, in
this case, to guarantee that no attacks are taking place when
training is performed. To that end, the techniques herein
specify a newly defined Multicast IPv6 message called Col-
1_Req that may include any or all of the following informa-
tion:

1.) The number of samples to be collected

2.) A maximum collection time limit when aggregation
will be triggered, regardless of the number of received
samples

3.) (Optionally) the ID (e.g., IPv6 address) of the aggrega-
tor
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4.) (Optionally) the ID (e.g., IPv6 address) of the comput-
ing entity in charge of processing the aggregates and comput-
ing the classifier

In one embodiment, the Coll_Req message is broadcast at
the link-layer using a protocol such a trickle multicast, as
specified in the Internet Draft Protocol “Multicast Protocol
for Low Power and Lossy Networks (MPL)” by J. Hui et al.
(August 2013) (draft-ietf-roll-trickle-mcast).

In the techniques herein, multiple models are specified:
although the collection of statistics specified above may take
place on all nodes, the aggregation of samples may take place
along specific nodes along the computed routing topology
(e.g., parents that have enough processing power and at least
N number of children) or at a dedicated node referred to as an
aggregator (e.g., a node in the network, which could also be
the NMS). Similarly the processing of the statistics to com-
pute the classifier may take place on a node in the LLN, the
Field Area Router, or the NMS. In other words, the described
architecture is entirely flexible and any network node can
aggregate data and/or compute a classifier.

Upon reception of a collection request message, every
node will begin collecting samples and updating the statistics
detailed above (e.g., M,,, M,, etc.). For each of the partial
sums associated with one of the above statistics, the node may
increase both the accumulation and the number of samples. In
particular, each sequence of a unicast period followed by a
broadcast slot will generate a number of samples (i.e., sets U,
B). For example, as shown in FIG. 4A, a node 34 may send
unicast messages to its neighbors, to collect sample data
regarding the success rate of its unicast slot (e.g., based on
acknowledged messages). Similarly, as shown in FIG. 4B,
node 34 may broadcast messages to its neighbors, to collect
sample data regarding the success rate of its broadcast slot
(e.g., based on acknowledged messages).

Once the number of samples specified in the collection
request message has been collected or the collecting period
specified in such message has expired, then a node will issue
a statistics report message, after the expiration of a random
timer to avoid nodes sending an avalanche of reports to the
NMS or aggregator. In one embodiment, the statistics report
message may be sent after the expiration of a small random
timer, to avoid the collisions of reports and is small enough to
allow for aggregation along the DAG. Such a message will
contain the statistics characterizing the observed distribution
of B and U by the node. In particular, as specified for each of
the statistics discussed above, the following partial sums,
along with the number of samples, may be exported as part of
the statistics report message:

SUM,(U,)

SUM,(B,)

SUM,(B,*U,)

SUM,(B,?)

SUM,(U%)

In some cases, the statistics report message also includes a
Bloom Filter which will be used in the following stages of
aggregation for keeping track of which nodes contributed to
the aggregated information. If no aggregation has been per-
formed yet, only the node issuing the message is included in
the set associated to the Bloom filter. The statistics report
message will be then sent to the aggregator, which may be the
direct parent if no aggregator is specified in the Call_Req
message or the specified aggregator otherwise.

A second aspect of the techniques herein involves aggre-
gating the previously collected statistics and computing a
model for anomaly detection, such as a Gaussian model. If
aggregation takes place along the DAG, each node in the DAG
may wait until it receives a statistics report message from each
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of its children, before reporting its statistics report. In addi-
tion, the node may utilize an export timer to control when the
node communicates its statistics report. Such a timer may, in
one embodiment, have a duration that is computed as the
value of the collection duration limit plus a value which is
inversely proportional to the node’s rank in the tree. Doing so
ensures that lower ranked nodes (i.e., those nodes closer to the
network root) will wait longer before performing aggrega-
tion. When such a timer expires, aggregation is triggered even
if some of the node’s children have not yet sent their reports
to the node. In either case, the node aggregates the statistics
received with the statistics collected from the node’s local
dataset. In greater detail, for each statistic, a given node node
merges both the partial sum and the number of samples asso-
ciated with each data set. The aggregator may also merge the
Bloom filters received by the contributing nodes (e.g., by
performing a bitwise-OR) and adds its own identifier to the
bloom filter in the aggregated message. Of note in this design
is that that the amount of information at each level of the tree
is constant.

In another embodiment of the techniques herein, each node
sends its statistics report directly to the specified aggregator
(e.g., a node such as a controller, the NMS, etc.) that aggre-
gates the data from the whole WPAN. In this case, the aggre-
gator can check the Bloom Filter against the network topol-
ogy and detect whether relevant areas of the LLN have not
reported statistics. In this case, the aggregator may request
that a new statistics collection be performed by resending a
Coll_Req message to the nodes. In case of distributed aggre-
gation along the DAG, the Bloom Filter may be replaced with
a counter, and the top-most node will check that data from a
sufficient number of nodes has been collected.

Aggregation may proceed recursively until the statistics
reach the topmost node in the DAG (e.g., this may be the FAR
itself). Once such a node finished performing aggregation, it
will be able to compute the global statistics for the aggregated
dataset collected by all of the nodes participating to this
mechanism. For instance, after receiving SUM,(U,), and the
number of elements in these sums from the node’s children,
the node will be able to compute M,, of the aggregation using
all the samples from the children nodes and its own local
samples.

FIGS. 5A-5F illustrate an example of network statistics
being aggregated. In a simplified example, statistics from
three nodes (i.e., nodes 1-3) are aggregated, to compute the
mean variable U from the aggregated dataset. In FIG. 5A,
assume that node 3 has been selected as an aggregator for
nodes 1 and 2. During a data collection phase, each of nodes
1-3 collects samples regarding their respective unicast and
broadcast slots. After the collection phase, each of nodes 1-3
computes the sum of its observed samples, along with the
number of samples. For example, as shown in FIG. 5B, node
3 may compute the sum of its observed samples. Similarly, as
shown in FIG. 5C, node 2 may compute its own sum using its
locally collected sample data. After each of nodes 1-2 com-
putes its local statistics, nodes 1-2 report their local statistics
to node 3. For example, as shown in FIG. 5D, node 2 reports
its statistics to node 3 (i.e., the sum of its successful unicast
messages and its overall total number of unicast messages).
At this point, node 3 has both its locally generated statistics
and the statistics generated by node 2. This process is repeated
between node 1 and node 3, as shown in FIGS. 5E-5F. Thus,
node 3 now has the locally generated statistics from all three
nodes and may perform aggregation on the statistics. For
example, node 3 may combine the received statistics to com-
pute the mean of the whole dataset as follows:
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Nst Ns3 Ns
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Ns! + Ns? + Ns3

Notably, this mechanism works without information loss and
with no additional state, besides the counters mentioned
above. As will be appreciated, the example mechanism can be
extended to all of the other statistics described above (e.g.,
means, variances, covariances, etc.).

—Computation of the Classifier—

Once the statistics have been collected and aggregated, the
statistics are processed by a computing entity/node to com-
pute the statistical model. The computing entity may be the
same node or may differ from the node in charge of gathering
and aggregating the statistics. In one embodiment, t comput-
ing entity makes use of a newly defined multicast IPv6 mes-
saged called the Classif( ) message that is broadcasted and
carries out a classifier description message containing the
complete characterization of a bivariate Gaussian model (i.e.,
the already recalled necessary statistics) to be used for detec-
tion. In addition, the message may include the density value
threshold that will be used for deciding whether or not to
trigger an alarm. For example, as shown in FIG. 6, the aggre-
gated statistics define the size and shape of a Gaussian distri-
bution 600, i.e., the mean vector represents the coordinates of
the center of the distribution, the covariance matrix deter-
mines the shape of the distribution, etc. Each node will install
such a statistical model (e.g., a statistical classifier) and enter
the detection and reaction phase.

As shown in FIG. 7, the regions of a bivariate Gaussian
model with the same density value define ellipses in the
2-dimensional space. The volume inside the ellipse 702 of the
bivariate Gaussian function gives the probability of this
region. In various embodiments, a density value threshold
may beused as part of the statistical model to define how “far”
a sample can be from the peak of the Gaussian distribution
without being considered an anomalous point (e.g., without
triggering an alarm). In other words, such a threshold can be
set to a value such that the probability of one sample of the
Gaussian distribution falling within the anomalous region
equals a target probability (e.g., a reasonable choice may be
99.999%). Therefore, a density value lower than the threshold
means that the observation is too far from the common behav-
ior and an alarm may be raised. For example, data points 704
may be outside of the density value threshold and deemed to
be network anomalies (e.g., such as when an attack is
present).

After receiving the details of the Gaussian or other statis-
tical model, each node may continue to compute the success
rate in both its broadcast/multicast and unicast slots. For each
sample (U,, B,), the node will compute its likelihood with
respect to the installed Gaussian model. If the likelihood of
the tuple of success ratios is lower than the installed threshold,
different behaviors can be adopted.

In one embodiment a mitigation mechanism can be trig-
gered. In another embodiment, the node can multicast an
alarm to its neighbors at the physical layer, in order to confirm
the detection. In yet another embodiment, the node will trig-
ger a hierarchical classifier method. In particular, the node
will send an alarm to the FAR, which, in turn, will send back
a proper message for installing a first level (weak) classifier.

In yet another embodiment, nodes may also broadcast/
multicast their local statistic summary to other nodes in the
vicinity (i.e., neighboring nodes) while potentially control-
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ling the vicinity with a radius. Upon receiving statistic from
other nodes, each node then computes its local classifier.
Although less data is accumulated in comparison to other
techniques described above, such a classifier will also be less
accurate and may be used in specific environments.

The final aspect of the techniques herein relates to a meth-
odology for avoiding overgeneralization of the statistical
model. Training a statistical model, such as a Gaussian model,
on the whole dataset observed by the nodes allows the model
to capture more variability. However, doing so may also lead
to bad performance, in some cases. For instance, bad perfor-
mance may result when multimodality is present in the
sample set, which cannot be captured by a Gaussian distribu-
tion. This is due to the fact that the order of the model is fixed
as opposed, for example, to an ANN that can capture data
complexity by adding more neurons to its hidden layer. This
means that nodes constituting outliers with respect to the
standard behaviors may come across as anomalies with
respectto the average behavior. For example, ifa small subset
of'nodes observes avery bad physical channel, they will show
very low success rates in both the unicast and broadcast slots.
A Gaussian model computed over the whole network may
classify such a behavior as an anomaly if the number of
samples corresponding to this behavior is much lower than
the number of samples for other behaviors.

Referring again to the example in FIG. 7, assume that
samples 704 represent a subset of nodes in a network region
with bad channel conditions and are detected by the Gaussian
model as an outlier/anomaly. In greater detail, nodes observ-
ing a bad channel typically exhibit low success rates both in
the broadcast and the unicast slot. Indeed, the presence of
these samples shifts the overall mean and increases the vari-
ance of the model, but this is not enough for avoiding their
classification as outliers.

In some cases, a more specialized statistical model may be
computed for a specific subset of nodes. Since there is no
central entity responsible for training the model, the tech-
niques herein propose a distributed and lightweight mecha-
nism for generating a specialized statistical model. In particu-
lar, once the global model has been installed, the nodes can
check the ratio of samples flagged as anomalous by the
model. It is again assumed that no attack is taking place
during the training phase and, therefore, those detections can
be considered to be false positives. If the number of false
positives exceeds a configurable threshold, then a node may
send to its parent a model re-computation request message.

If a parent node receives a re-computation alert from a
configurable portion of its children, the parent node may in
turn escalate and send a re-computation alert to its own par-
ent. The procedure will escalate recursively towards the root
of'the tree and will only stop whenever a parent node receives
anumber of re-computation alerts that stays below the thresh-
old. In this case, the parent node will send a re-computation
request message to the children nodes that sent the reconfigu-
ration alert. The re-computation request will be propagated
towards the bottom of the tree, and the nodes receiving it will
start over from the data collection phase detailed above. In
other words, the data will be collected again since the emerg-
ing of false positives may stem from a change in the statistic
nature of the observed behavior. Data collection and aggre-
gation will then be performed again only by the subset of
nodes which raised the re-computation alarm.

In another embodiment of the techniques herein, nodes
may send their re-computation alerts directly to the specified
aggregator (e.g.,anode such as a controller, orthe NMS). The
aggregator may then compute clusters of nodes in close prox-
imity that are observing and/or demonstrating anomalies. The
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aggregator may then send a re-computation request message
to the groups (e.g., using unicast, multicast, etc.).

FIG. 8 depicts the behavior of the mechanism where a
subset of network nodes request re-computation of their sta-
tistical models. For example, the above-mentioned threshold
may be set to 0.6 (i.e. the re-computation alerts are propa-
gated only if more than 60% of the sons of a node sent an
alert). In this particular case, a subset of nodes (i.e., nodes
41-44 in bad channel area 802) are experiencing bad channel
conditions and witnessing a too high false positive rate. All of
the nodes in area 802 then send re-computation alerts, which
is propagated by intermediate nodes A and B (i.e., all of their
children have sent an alert). Propagation is then blocked by
node C, since only 50% of its children nodes sent the alert,
which initiates the re-computation phase. The re-computa-
tion request will then propagate through the whole subtree,
thereby causing the nodes under node C to re-compute a
statistical model.

FIG. 9 illustrates an example simplified procedure for
detecting an anomaly in a computer network, such as an LLN,
in accordance with one or more embodiments herein. Proce-
dure 900 begins at step 905 and proceeds to step 910 in which,
as described above in more detail, a training request is sent to
one or more network nodes to collect unicast and broadcast
statistics. Such statistics may, for example, relate to the suc-
cessful transmission rates observed by the nodes via their
respective unicast and broadcast communication slots. In step
915, the statics generated by the nodes are received and, in
step 920, a statistical model is generated. As highlighted
above, such a statistical model may be a Gaussian classifier or
other model configured to detect a network anomaly using the
received statistics. In step 925, the statistical model is then
sent to the nodes, allowing the nodes to detect an anomalous
network condition, such as a network attack. In step 930, an
indication of a detected attack is received from one of the
nodes and procedure 900 ends at step 935.

It should be noted that while certain steps within procedure
900 may be optional as described above, the steps shown in
FIG. 9 are merely examples for illustration, and certain steps
may be included or excluded as desired.

Tustratively, each of the techniques described herein may
be performed by hardware, software, and/or firmware, such
as in accordance with the learning machine process 248,
which may contain computer executable instructions
executed by the processor 220 (or independent processor of
interfaces 210) to perform functions relating to the techniques
described herein, e.g., optionally in conjunction with other
processes. For example, certain aspects of the techniques
herein may be treated as extensions to conventional protocols,
such as the various communication protocols (e.g., routing
process 244), and as such, may be processed by similar com-
ponents understood in the art that execute those protocols,
accordingly. Also, while certain aspects of the techniques
herein may be described from the perspective of a single
node/device, embodiments described herein may be per-
formed as distributed intelligence, also referred to as edge/
distributed computing, such as hosting intelligence within
nodes 110 of a Field Area Network in addition to or as an
alternative to hosting intelligence within servers 150.

The techniques described herein, therefore, provide for a
distributed lightweight LM-based approach for anomaly
detection. In particular, the techniques herein allow DoS
detection to be performed with minimal computing and band-
width requirements. In addition, the disclosed techniques
require minimal support from a FAR or NMS, besides simple
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configuration and management. The techniques, thus provide
avery lightweight and easy to deploy solution for DoS attack
detection in LLNG.

While there have been shown and described illustrative
embodiments that provide for computer network anomaly
training and detection using artificial neural networks, gen-
erally, it is to be understood that various other adaptations and
modifications may be made within the spirit and scope of the
embodiments herein. For example, the embodiments have
been shown and described herein with relation to LLNs and
related protocols. However, the embodiments in their broader
sense are not as limited, and may, in fact, be used with other
types of communication networks and/or protocols. In addi-
tion, while the embodiments have been shown and described
with relation to learning machines in the specific context of
communication networks, certain techniques and/or certain
aspects of the techniques may apply to learning machines in
general without the need for relation to communication net-
works, as will be understood by those skilled in the art.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it is expressly contemplated that the
components and/or elements described herein can be imple-
mented as software being stored on a tangible (non-transi-
tory) computer-readable medium (e.g., disks/CDs/RAM/EE-
PROM/etc.) having program instructions executing on a
computer, hardware, firmware, or a combination thereof.
Accordingly this description is to be taken only by way of
example and not to otherwise limit the scope of the embodi-
ments herein. Therefore, it is the object of the appended
claims to cover all such variations and modifications as come
within the true spirit and scope of the embodiments herein.

What is claimed is:

1. A method, comprising:

sending a training request to a plurality of nodes in a

network, wherein the training request causes the nodes

to generate statistics regarding unicast and broadcast

message reception rates associated with the nodes;
receiving the statistics from the nodes;

generating a statistical model using the received statistics,

wherein the statistical model is configured to detect a
network attack by comparing unicast and broadcast
message reception rate statistics;

providing the statistical model to the nodes; and

receiving, from a particular node, an indication that a net-

work attack was detected by the particular node.

2. The method as in claim 1, wherein the statistical model
is a Gaussian model.

3. The method as in claim 1, wherein the statistical model
detects a network attack by determining that a difference
between the unicast and broadcast message reception statis-
tics exceeds a threshold amount.

4. The method as in claim 1, further comprising:

determining that the network attack detected by the par-

ticular node was a false positive; and

sending a notification to the particular node that the

detected attack was a false positive.

5. The method as in claim 4, further comprising:

receiving, from the particular node, a re-computation

request that was sent based on a determination that a
percentage of false positives generated by the particular
node exceeds a threshold amount; and

instructing a portion of the plurality of nodes that includes

the particular node to generate a new statistical model.
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6. The method as in claim 1, wherein nodes in the plurality
send the generated statistics to a data aggregator that aggre-
gates the statistics and sends the aggregated statistics to a
network manager.

7. The method as in claim 1, wherein the particular node
that detected the network attack broadcasts the indication to
other nodes in the plurality.

8. The method as in claim 1, further comprising:

sending a low precision machine learning model to one or

more of the nodes in the plurality in response to receiv-
ing the indication of the detected network attack.

9. The method as in claim 1, wherein the statistics are
broadcast from a node in the plurality to neighboring nodes
within a radius, and wherein each of the neighboring nodes
computes a local statistical model using the broadcast statis-
tics.

10. An apparatus, comprising:

one or more network interfaces to communicate in a com-

puter network;

a processor coupled to the network interfaces and config-

ured to execute one or more processes; and

a memory configured to store a process executable by the

processor, the process when executed operable to:

send a training request to a plurality of nodes in a net-
work, wherein the training request causes the nodes to
generate statistics regarding unicast and broadcast
message reception rates associated with the nodes;

receive the statistics from the nodes;

generate a statistical model using the received statistics,
wherein the statistical model is configured to detect a
network attack by comparing unicast and broadcast
message reception rate statistics;

provide the statistical model to the nodes; and

receive, from a particular node, an indication that a net-
work attack was detected by the particular node.

11. The apparatus as in claim 10, wherein the statistical
model is a Gaussian model.

12. The apparatus as in claim 10, wherein the statistical
model detects a network attack by determining that a differ-
ence between the unicast and broadcast message reception
statistics exceeds a threshold amount.

13. The apparatus as in claim 10, wherein the process when
executed is operable to:

determine that the network attack detected by the particular

node was a false positive; and

send a notification to the particular node that the detected

attack was a false positive.

14. The apparatus as in claim 13, wherein the process when
executed is operable to:

receive, from the particular node, a re-computation request

that was sent based on a determination that a percentage
of false positives generated by the particular node
exceeds a threshold amount; and

instruct a portion of the plurality of nodes that includes the

particular node to generate a new statistical model.

15. The apparatus as in claim 10, wherein the node that
detected the network attack broadcasts the indication to other
nodes in the plurality.

16. The apparatus as in claim 10, wherein the statistics are
broadcast from a node in the plurality to neighboring nodes
within a radius, and wherein each of the neighboring nodes
computes a local statistical model using the broadcast statis-
tics.

17. The apparatus as in claim 10, wherein nodes in the
plurality send the generated statistics to a data aggregator that
aggregates the statistics and sends the aggregated statistics to
a network manager.



US 9,160,760 B2

21

18. A tangible, non-transitory, computer-readable media
having software encoded thereon, the software when
executed by a processor operable to:

send a training request to a plurality of nodes in a network,

wherein the training request causes the nodes to generate
statistics regarding unicast and broadcast message
reception rates associated with the nodes;

receive the statistics from the nodes;

generate a statistical model using the received statistics,

wherein the statistical model is configured to detect a
network attack by comparing unicast and broadcast
message reception rate statistics;

provide the statistical model to the nodes; and

receive, from a particular node, an indication that a net-

work attack was detected by the particular node.

19. The computer-readable media of claim 18, wherein the
statistical model is a Gaussian model.

20. The computer-readable media of claim 18, wherein the
statistical model detects a network attack by determining that
a difference between the unicast and broadcast message
reception statistics exceeds a threshold amount.
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